Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|- ( x = (/) -> ( x ~~ z <-> (/) ~~ z ) ) |
2 |
|
eqeq1 |
|- ( x = (/) -> ( x = z <-> (/) = z ) ) |
3 |
1 2
|
imbi12d |
|- ( x = (/) -> ( ( x ~~ z -> x = z ) <-> ( (/) ~~ z -> (/) = z ) ) ) |
4 |
3
|
ralbidv |
|- ( x = (/) -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( (/) ~~ z -> (/) = z ) ) ) |
5 |
|
breq1 |
|- ( x = y -> ( x ~~ z <-> y ~~ z ) ) |
6 |
|
eqeq1 |
|- ( x = y -> ( x = z <-> y = z ) ) |
7 |
5 6
|
imbi12d |
|- ( x = y -> ( ( x ~~ z -> x = z ) <-> ( y ~~ z -> y = z ) ) ) |
8 |
7
|
ralbidv |
|- ( x = y -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( y ~~ z -> y = z ) ) ) |
9 |
|
breq1 |
|- ( x = suc y -> ( x ~~ z <-> suc y ~~ z ) ) |
10 |
|
eqeq1 |
|- ( x = suc y -> ( x = z <-> suc y = z ) ) |
11 |
9 10
|
imbi12d |
|- ( x = suc y -> ( ( x ~~ z -> x = z ) <-> ( suc y ~~ z -> suc y = z ) ) ) |
12 |
11
|
ralbidv |
|- ( x = suc y -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( suc y ~~ z -> suc y = z ) ) ) |
13 |
|
breq1 |
|- ( x = A -> ( x ~~ z <-> A ~~ z ) ) |
14 |
|
eqeq1 |
|- ( x = A -> ( x = z <-> A = z ) ) |
15 |
13 14
|
imbi12d |
|- ( x = A -> ( ( x ~~ z -> x = z ) <-> ( A ~~ z -> A = z ) ) ) |
16 |
15
|
ralbidv |
|- ( x = A -> ( A. z e. _om ( x ~~ z -> x = z ) <-> A. z e. _om ( A ~~ z -> A = z ) ) ) |
17 |
|
0fin |
|- (/) e. Fin |
18 |
|
ensymfib |
|- ( (/) e. Fin -> ( (/) ~~ z <-> z ~~ (/) ) ) |
19 |
17 18
|
ax-mp |
|- ( (/) ~~ z <-> z ~~ (/) ) |
20 |
|
en0 |
|- ( z ~~ (/) <-> z = (/) ) |
21 |
|
eqcom |
|- ( z = (/) <-> (/) = z ) |
22 |
20 21
|
bitri |
|- ( z ~~ (/) <-> (/) = z ) |
23 |
19 22
|
sylbb |
|- ( (/) ~~ z -> (/) = z ) |
24 |
23
|
rgenw |
|- A. z e. _om ( (/) ~~ z -> (/) = z ) |
25 |
|
nn0suc |
|- ( w e. _om -> ( w = (/) \/ E. z e. _om w = suc z ) ) |
26 |
|
en0 |
|- ( suc y ~~ (/) <-> suc y = (/) ) |
27 |
|
breq2 |
|- ( w = (/) -> ( suc y ~~ w <-> suc y ~~ (/) ) ) |
28 |
|
eqeq2 |
|- ( w = (/) -> ( suc y = w <-> suc y = (/) ) ) |
29 |
27 28
|
bibi12d |
|- ( w = (/) -> ( ( suc y ~~ w <-> suc y = w ) <-> ( suc y ~~ (/) <-> suc y = (/) ) ) ) |
30 |
26 29
|
mpbiri |
|- ( w = (/) -> ( suc y ~~ w <-> suc y = w ) ) |
31 |
30
|
biimpd |
|- ( w = (/) -> ( suc y ~~ w -> suc y = w ) ) |
32 |
31
|
a1i |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( w = (/) -> ( suc y ~~ w -> suc y = w ) ) ) |
33 |
|
nfv |
|- F/ z y e. _om |
34 |
|
nfra1 |
|- F/ z A. z e. _om ( y ~~ z -> y = z ) |
35 |
33 34
|
nfan |
|- F/ z ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) |
36 |
|
nfv |
|- F/ z ( suc y ~~ w -> suc y = w ) |
37 |
|
vex |
|- y e. _V |
38 |
37
|
phplem2 |
|- ( ( y e. _om /\ z e. _om ) -> ( suc y ~~ suc z -> y ~~ z ) ) |
39 |
38
|
imim1d |
|- ( ( y e. _om /\ z e. _om ) -> ( ( y ~~ z -> y = z ) -> ( suc y ~~ suc z -> y = z ) ) ) |
40 |
39
|
ex |
|- ( y e. _om -> ( z e. _om -> ( ( y ~~ z -> y = z ) -> ( suc y ~~ suc z -> y = z ) ) ) ) |
41 |
40
|
a2d |
|- ( y e. _om -> ( ( z e. _om -> ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> y = z ) ) ) ) |
42 |
|
rsp |
|- ( A. z e. _om ( y ~~ z -> y = z ) -> ( z e. _om -> ( y ~~ z -> y = z ) ) ) |
43 |
41 42
|
impel |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> y = z ) ) ) |
44 |
|
suceq |
|- ( y = z -> suc y = suc z ) |
45 |
43 44
|
syl8 |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( suc y ~~ suc z -> suc y = suc z ) ) ) |
46 |
|
breq2 |
|- ( w = suc z -> ( suc y ~~ w <-> suc y ~~ suc z ) ) |
47 |
|
eqeq2 |
|- ( w = suc z -> ( suc y = w <-> suc y = suc z ) ) |
48 |
46 47
|
imbi12d |
|- ( w = suc z -> ( ( suc y ~~ w -> suc y = w ) <-> ( suc y ~~ suc z -> suc y = suc z ) ) ) |
49 |
48
|
biimprcd |
|- ( ( suc y ~~ suc z -> suc y = suc z ) -> ( w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) |
50 |
45 49
|
syl6 |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( z e. _om -> ( w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) ) |
51 |
35 36 50
|
rexlimd |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( E. z e. _om w = suc z -> ( suc y ~~ w -> suc y = w ) ) ) |
52 |
32 51
|
jaod |
|- ( ( y e. _om /\ A. z e. _om ( y ~~ z -> y = z ) ) -> ( ( w = (/) \/ E. z e. _om w = suc z ) -> ( suc y ~~ w -> suc y = w ) ) ) |
53 |
52
|
ex |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> ( ( w = (/) \/ E. z e. _om w = suc z ) -> ( suc y ~~ w -> suc y = w ) ) ) ) |
54 |
25 53
|
syl7 |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> ( w e. _om -> ( suc y ~~ w -> suc y = w ) ) ) ) |
55 |
54
|
ralrimdv |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> A. w e. _om ( suc y ~~ w -> suc y = w ) ) ) |
56 |
|
breq2 |
|- ( w = z -> ( suc y ~~ w <-> suc y ~~ z ) ) |
57 |
|
eqeq2 |
|- ( w = z -> ( suc y = w <-> suc y = z ) ) |
58 |
56 57
|
imbi12d |
|- ( w = z -> ( ( suc y ~~ w -> suc y = w ) <-> ( suc y ~~ z -> suc y = z ) ) ) |
59 |
58
|
cbvralvw |
|- ( A. w e. _om ( suc y ~~ w -> suc y = w ) <-> A. z e. _om ( suc y ~~ z -> suc y = z ) ) |
60 |
55 59
|
syl6ib |
|- ( y e. _om -> ( A. z e. _om ( y ~~ z -> y = z ) -> A. z e. _om ( suc y ~~ z -> suc y = z ) ) ) |
61 |
4 8 12 16 24 60
|
finds |
|- ( A e. _om -> A. z e. _om ( A ~~ z -> A = z ) ) |
62 |
|
breq2 |
|- ( z = B -> ( A ~~ z <-> A ~~ B ) ) |
63 |
|
eqeq2 |
|- ( z = B -> ( A = z <-> A = B ) ) |
64 |
62 63
|
imbi12d |
|- ( z = B -> ( ( A ~~ z -> A = z ) <-> ( A ~~ B -> A = B ) ) ) |
65 |
64
|
rspcv |
|- ( B e. _om -> ( A. z e. _om ( A ~~ z -> A = z ) -> ( A ~~ B -> A = B ) ) ) |
66 |
61 65
|
mpan9 |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B -> A = B ) ) |
67 |
|
enrefnn |
|- ( A e. _om -> A ~~ A ) |
68 |
|
breq2 |
|- ( A = B -> ( A ~~ A <-> A ~~ B ) ) |
69 |
67 68
|
syl5ibcom |
|- ( A e. _om -> ( A = B -> A ~~ B ) ) |
70 |
69
|
adantr |
|- ( ( A e. _om /\ B e. _om ) -> ( A = B -> A ~~ B ) ) |
71 |
66 70
|
impbid |
|- ( ( A e. _om /\ B e. _om ) -> ( A ~~ B <-> A = B ) ) |