| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							bren | 
							 |-  ( A ~~ B <-> E. f f : A -1-1-onto-> B )  | 
						
						
							| 2 | 
							
								
							 | 
							19.42v | 
							 |-  ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) <-> ( A e. Fin /\ E. f f : A -1-1-onto-> B ) )  | 
						
						
							| 3 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A )  | 
						
						
							| 4 | 
							
								
							 | 
							f1oenfirn | 
							 |-  ( ( A e. Fin /\ `' f : B -1-1-onto-> A ) -> B ~~ A )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylan2 | 
							 |-  ( ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A )  | 
						
						
							| 6 | 
							
								5
							 | 
							exlimiv | 
							 |-  ( E. f ( A e. Fin /\ f : A -1-1-onto-> B ) -> B ~~ A )  | 
						
						
							| 7 | 
							
								2 6
							 | 
							sylbir | 
							 |-  ( ( A e. Fin /\ E. f f : A -1-1-onto-> B ) -> B ~~ A )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							sylan2b | 
							 |-  ( ( A e. Fin /\ A ~~ B ) -> B ~~ A )  | 
						
						
							| 9 | 
							
								
							 | 
							bren | 
							 |-  ( B ~~ A <-> E. g g : B -1-1-onto-> A )  | 
						
						
							| 10 | 
							
								
							 | 
							19.42v | 
							 |-  ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) <-> ( A e. Fin /\ E. g g : B -1-1-onto-> A ) )  | 
						
						
							| 11 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( g : B -1-1-onto-> A -> `' g : A -1-1-onto-> B )  | 
						
						
							| 12 | 
							
								
							 | 
							f1oenfi | 
							 |-  ( ( A e. Fin /\ `' g : A -1-1-onto-> B ) -> A ~~ B )  | 
						
						
							| 13 | 
							
								11 12
							 | 
							sylan2 | 
							 |-  ( ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B )  | 
						
						
							| 14 | 
							
								13
							 | 
							exlimiv | 
							 |-  ( E. g ( A e. Fin /\ g : B -1-1-onto-> A ) -> A ~~ B )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							sylbir | 
							 |-  ( ( A e. Fin /\ E. g g : B -1-1-onto-> A ) -> A ~~ B )  | 
						
						
							| 16 | 
							
								9 15
							 | 
							sylan2b | 
							 |-  ( ( A e. Fin /\ B ~~ A ) -> A ~~ B )  | 
						
						
							| 17 | 
							
								8 16
							 | 
							impbida | 
							 |-  ( A e. Fin -> ( A ~~ B <-> B ~~ A ) )  |