| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1ocnv | 
							 |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A )  | 
						
						
							| 2 | 
							
								
							 | 
							f1ofn | 
							 |-  ( `' F : B -1-1-onto-> A -> `' F Fn B )  | 
						
						
							| 3 | 
							
								
							 | 
							fnfi | 
							 |-  ( ( `' F Fn B /\ B e. Fin ) -> `' F e. Fin )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan | 
							 |-  ( ( `' F : B -1-1-onto-> A /\ B e. Fin ) -> `' F e. Fin )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							sylan | 
							 |-  ( ( F : A -1-1-onto-> B /\ B e. Fin ) -> `' F e. Fin )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancoms | 
							 |-  ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> `' F e. Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							cnvfi | 
							 |-  ( `' F e. Fin -> `' `' F e. Fin )  | 
						
						
							| 8 | 
							
								
							 | 
							f1orel | 
							 |-  ( F : A -1-1-onto-> B -> Rel F )  | 
						
						
							| 9 | 
							
								
							 | 
							dfrel2 | 
							 |-  ( Rel F <-> `' `' F = F )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							 |-  ( F : A -1-1-onto-> B -> `' `' F = F )  | 
						
						
							| 11 | 
							
								10
							 | 
							eleq1d | 
							 |-  ( F : A -1-1-onto-> B -> ( `' `' F e. Fin <-> F e. Fin ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpac | 
							 |-  ( ( `' `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							sylan | 
							 |-  ( ( `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							sylancom | 
							 |-  ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin )  | 
						
						
							| 15 | 
							
								
							 | 
							f1oen3g | 
							 |-  ( ( F e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylancom | 
							 |-  ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B )  |