Metamath Proof Explorer


Theorem f1oenfirn

Description: If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024)

Ref Expression
Assertion f1oenfirn
|- ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B )

Proof

Step Hyp Ref Expression
1 f1ocnv
 |-  ( F : A -1-1-onto-> B -> `' F : B -1-1-onto-> A )
2 f1ofn
 |-  ( `' F : B -1-1-onto-> A -> `' F Fn B )
3 fnfi
 |-  ( ( `' F Fn B /\ B e. Fin ) -> `' F e. Fin )
4 2 3 sylan
 |-  ( ( `' F : B -1-1-onto-> A /\ B e. Fin ) -> `' F e. Fin )
5 1 4 sylan
 |-  ( ( F : A -1-1-onto-> B /\ B e. Fin ) -> `' F e. Fin )
6 5 ancoms
 |-  ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> `' F e. Fin )
7 cnvfi
 |-  ( `' F e. Fin -> `' `' F e. Fin )
8 f1orel
 |-  ( F : A -1-1-onto-> B -> Rel F )
9 dfrel2
 |-  ( Rel F <-> `' `' F = F )
10 8 9 sylib
 |-  ( F : A -1-1-onto-> B -> `' `' F = F )
11 10 eleq1d
 |-  ( F : A -1-1-onto-> B -> ( `' `' F e. Fin <-> F e. Fin ) )
12 11 biimpac
 |-  ( ( `' `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin )
13 7 12 sylan
 |-  ( ( `' F e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin )
14 6 13 sylancom
 |-  ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> F e. Fin )
15 f1oen3g
 |-  ( ( F e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B )
16 14 15 sylancom
 |-  ( ( B e. Fin /\ F : A -1-1-onto-> B ) -> A ~~ B )