Step |
Hyp |
Ref |
Expression |
1 |
|
relcnv |
|- Rel `' `' R |
2 |
|
vex |
|- x e. _V |
3 |
|
vex |
|- y e. _V |
4 |
2 3
|
opelcnv |
|- ( <. x , y >. e. `' `' R <-> <. y , x >. e. `' R ) |
5 |
3 2
|
opelcnv |
|- ( <. y , x >. e. `' R <-> <. x , y >. e. R ) |
6 |
4 5
|
bitri |
|- ( <. x , y >. e. `' `' R <-> <. x , y >. e. R ) |
7 |
6
|
eqrelriv |
|- ( ( Rel `' `' R /\ Rel R ) -> `' `' R = R ) |
8 |
1 7
|
mpan |
|- ( Rel R -> `' `' R = R ) |
9 |
|
releq |
|- ( `' `' R = R -> ( Rel `' `' R <-> Rel R ) ) |
10 |
1 9
|
mpbii |
|- ( `' `' R = R -> Rel R ) |
11 |
8 10
|
impbii |
|- ( Rel R <-> `' `' R = R ) |