Metamath Proof Explorer


Theorem dfrel2

Description: Alternate definition of relation. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 29-Dec-1996)

Ref Expression
Assertion dfrel2 ( Rel 𝑅 𝑅 = 𝑅 )

Proof

Step Hyp Ref Expression
1 relcnv Rel 𝑅
2 vex 𝑥 ∈ V
3 vex 𝑦 ∈ V
4 2 3 opelcnv ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ↔ ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 )
5 3 2 opelcnv ( ⟨ 𝑦 , 𝑥 ⟩ ∈ 𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
6 4 5 bitri ( ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 ↔ ⟨ 𝑥 , 𝑦 ⟩ ∈ 𝑅 )
7 6 eqrelriv ( ( Rel 𝑅 ∧ Rel 𝑅 ) → 𝑅 = 𝑅 )
8 1 7 mpan ( Rel 𝑅 𝑅 = 𝑅 )
9 releq ( 𝑅 = 𝑅 → ( Rel 𝑅 ↔ Rel 𝑅 ) )
10 1 9 mpbii ( 𝑅 = 𝑅 → Rel 𝑅 )
11 8 10 impbii ( Rel 𝑅 𝑅 = 𝑅 )