Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrel4v | ⊢ ( Rel 𝑅 ↔ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 | ⊢ ( Rel 𝑅 ↔ ◡ ◡ 𝑅 = 𝑅 ) | |
2 | eqcom | ⊢ ( ◡ ◡ 𝑅 = 𝑅 ↔ 𝑅 = ◡ ◡ 𝑅 ) | |
3 | cnvcnv3 | ⊢ ◡ ◡ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } | |
4 | 3 | eqeq2i | ⊢ ( 𝑅 = ◡ ◡ 𝑅 ↔ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |
5 | 1 2 4 | 3bitri | ⊢ ( Rel 𝑅 ↔ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ) |