| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1ocnv | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 )  | 
						
						
							| 2 | 
							
								
							 | 
							f1ofn | 
							⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴  →  ◡ 𝐹  Fn  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							fnfi | 
							⊢ ( ( ◡ 𝐹  Fn  𝐵  ∧  𝐵  ∈  Fin )  →  ◡ 𝐹  ∈  Fin )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sylan | 
							⊢ ( ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴  ∧  𝐵  ∈  Fin )  →  ◡ 𝐹  ∈  Fin )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							sylan | 
							⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  ∧  𝐵  ∈  Fin )  →  ◡ 𝐹  ∈  Fin )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancoms | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  ◡ 𝐹  ∈  Fin )  | 
						
						
							| 7 | 
							
								
							 | 
							cnvfi | 
							⊢ ( ◡ 𝐹  ∈  Fin  →  ◡ ◡ 𝐹  ∈  Fin )  | 
						
						
							| 8 | 
							
								
							 | 
							f1orel | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  Rel  𝐹 )  | 
						
						
							| 9 | 
							
								
							 | 
							dfrel2 | 
							⊢ ( Rel  𝐹  ↔  ◡ ◡ 𝐹  =  𝐹 )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ◡ ◡ 𝐹  =  𝐹 )  | 
						
						
							| 11 | 
							
								10
							 | 
							eleq1d | 
							⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  ( ◡ ◡ 𝐹  ∈  Fin  ↔  𝐹  ∈  Fin ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpac | 
							⊢ ( ( ◡ ◡ 𝐹  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐹  ∈  Fin )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							sylan | 
							⊢ ( ( ◡ 𝐹  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐹  ∈  Fin )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							sylancom | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐹  ∈  Fin )  | 
						
						
							| 15 | 
							
								
							 | 
							f1oen3g | 
							⊢ ( ( 𝐹  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐴  ≈  𝐵 )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylancom | 
							⊢ ( ( 𝐵  ∈  Fin  ∧  𝐹 : 𝐴 –1-1-onto→ 𝐵 )  →  𝐴  ≈  𝐵 )  |