Metamath Proof Explorer


Theorem cnvfi

Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014) Avoid ax-pow . (Revised by BTernaryTau, 9-Sep-2024)

Ref Expression
Assertion cnvfi ( 𝐴 ∈ Fin → 𝐴 ∈ Fin )

Proof

Step Hyp Ref Expression
1 cnveq ( 𝑥 = ∅ → 𝑥 = ∅ )
2 1 eleq1d ( 𝑥 = ∅ → ( 𝑥 ∈ Fin ↔ ∅ ∈ Fin ) )
3 cnveq ( 𝑥 = 𝑦 𝑥 = 𝑦 )
4 3 eleq1d ( 𝑥 = 𝑦 → ( 𝑥 ∈ Fin ↔ 𝑦 ∈ Fin ) )
5 cnveq ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → 𝑥 = ( 𝑦 ∪ { 𝑧 } ) )
6 5 eleq1d ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ∈ Fin ↔ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) )
7 cnveq ( 𝑥 = 𝐴 𝑥 = 𝐴 )
8 7 eleq1d ( 𝑥 = 𝐴 → ( 𝑥 ∈ Fin ↔ 𝐴 ∈ Fin ) )
9 cnv0 ∅ = ∅
10 0fin ∅ ∈ Fin
11 9 10 eqeltri ∅ ∈ Fin
12 cnvun ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 { 𝑧 } )
13 elvv ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ )
14 sneq ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → { 𝑧 } = { ⟨ 𝑢 , 𝑣 ⟩ } )
15 cnveq ( { 𝑧 } = { ⟨ 𝑢 , 𝑣 ⟩ } → { 𝑧 } = { ⟨ 𝑢 , 𝑣 ⟩ } )
16 vex 𝑢 ∈ V
17 vex 𝑣 ∈ V
18 16 17 cnvsn { ⟨ 𝑢 , 𝑣 ⟩ } = { ⟨ 𝑣 , 𝑢 ⟩ }
19 15 18 eqtrdi ( { 𝑧 } = { ⟨ 𝑢 , 𝑣 ⟩ } → { 𝑧 } = { ⟨ 𝑣 , 𝑢 ⟩ } )
20 14 19 syl ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → { 𝑧 } = { ⟨ 𝑣 , 𝑢 ⟩ } )
21 snfi { ⟨ 𝑣 , 𝑢 ⟩ } ∈ Fin
22 20 21 eqeltrdi ( 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → { 𝑧 } ∈ Fin )
23 22 exlimivv ( ∃ 𝑢𝑣 𝑧 = ⟨ 𝑢 , 𝑣 ⟩ → { 𝑧 } ∈ Fin )
24 13 23 sylbi ( 𝑧 ∈ ( V × V ) → { 𝑧 } ∈ Fin )
25 dfdm4 dom { 𝑧 } = ran { 𝑧 }
26 dmsnn0 ( 𝑧 ∈ ( V × V ) ↔ dom { 𝑧 } ≠ ∅ )
27 26 biimpri ( dom { 𝑧 } ≠ ∅ → 𝑧 ∈ ( V × V ) )
28 27 necon1bi ( ¬ 𝑧 ∈ ( V × V ) → dom { 𝑧 } = ∅ )
29 25 28 eqtr3id ( ¬ 𝑧 ∈ ( V × V ) → ran { 𝑧 } = ∅ )
30 relcnv Rel { 𝑧 }
31 relrn0 ( Rel { 𝑧 } → ( { 𝑧 } = ∅ ↔ ran { 𝑧 } = ∅ ) )
32 30 31 ax-mp ( { 𝑧 } = ∅ ↔ ran { 𝑧 } = ∅ )
33 29 32 sylibr ( ¬ 𝑧 ∈ ( V × V ) → { 𝑧 } = ∅ )
34 33 10 eqeltrdi ( ¬ 𝑧 ∈ ( V × V ) → { 𝑧 } ∈ Fin )
35 24 34 pm2.61i { 𝑧 } ∈ Fin
36 unfi ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 { 𝑧 } ) ∈ Fin )
37 35 36 mpan2 ( 𝑦 ∈ Fin → ( 𝑦 { 𝑧 } ) ∈ Fin )
38 12 37 eqeltrid ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin )
39 38 a1i ( 𝑦 ∈ Fin → ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) )
40 2 4 6 8 11 39 findcard2 ( 𝐴 ∈ Fin → 𝐴 ∈ Fin )