Step |
Hyp |
Ref |
Expression |
1 |
|
cnveq |
⊢ ( 𝑥 = ∅ → ◡ 𝑥 = ◡ ∅ ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ◡ 𝑥 ∈ Fin ↔ ◡ ∅ ∈ Fin ) ) |
3 |
|
cnveq |
⊢ ( 𝑥 = 𝑦 → ◡ 𝑥 = ◡ 𝑦 ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ◡ 𝑥 ∈ Fin ↔ ◡ 𝑦 ∈ Fin ) ) |
5 |
|
cnveq |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ◡ 𝑥 = ◡ ( 𝑦 ∪ { 𝑧 } ) ) |
6 |
5
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ◡ 𝑥 ∈ Fin ↔ ◡ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
7 |
|
cnveq |
⊢ ( 𝑥 = 𝐴 → ◡ 𝑥 = ◡ 𝐴 ) |
8 |
7
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ◡ 𝑥 ∈ Fin ↔ ◡ 𝐴 ∈ Fin ) ) |
9 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
10 |
|
0fin |
⊢ ∅ ∈ Fin |
11 |
9 10
|
eqeltri |
⊢ ◡ ∅ ∈ Fin |
12 |
|
cnvun |
⊢ ◡ ( 𝑦 ∪ { 𝑧 } ) = ( ◡ 𝑦 ∪ ◡ { 𝑧 } ) |
13 |
|
elvv |
⊢ ( 𝑧 ∈ ( V × V ) ↔ ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 ) |
14 |
|
sneq |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } ) |
15 |
|
cnveq |
⊢ ( { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } → ◡ { 𝑧 } = ◡ { 〈 𝑢 , 𝑣 〉 } ) |
16 |
|
vex |
⊢ 𝑢 ∈ V |
17 |
|
vex |
⊢ 𝑣 ∈ V |
18 |
16 17
|
cnvsn |
⊢ ◡ { 〈 𝑢 , 𝑣 〉 } = { 〈 𝑣 , 𝑢 〉 } |
19 |
15 18
|
eqtrdi |
⊢ ( { 𝑧 } = { 〈 𝑢 , 𝑣 〉 } → ◡ { 𝑧 } = { 〈 𝑣 , 𝑢 〉 } ) |
20 |
14 19
|
syl |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ◡ { 𝑧 } = { 〈 𝑣 , 𝑢 〉 } ) |
21 |
|
snfi |
⊢ { 〈 𝑣 , 𝑢 〉 } ∈ Fin |
22 |
20 21
|
eqeltrdi |
⊢ ( 𝑧 = 〈 𝑢 , 𝑣 〉 → ◡ { 𝑧 } ∈ Fin ) |
23 |
22
|
exlimivv |
⊢ ( ∃ 𝑢 ∃ 𝑣 𝑧 = 〈 𝑢 , 𝑣 〉 → ◡ { 𝑧 } ∈ Fin ) |
24 |
13 23
|
sylbi |
⊢ ( 𝑧 ∈ ( V × V ) → ◡ { 𝑧 } ∈ Fin ) |
25 |
|
dfdm4 |
⊢ dom { 𝑧 } = ran ◡ { 𝑧 } |
26 |
|
dmsnn0 |
⊢ ( 𝑧 ∈ ( V × V ) ↔ dom { 𝑧 } ≠ ∅ ) |
27 |
26
|
biimpri |
⊢ ( dom { 𝑧 } ≠ ∅ → 𝑧 ∈ ( V × V ) ) |
28 |
27
|
necon1bi |
⊢ ( ¬ 𝑧 ∈ ( V × V ) → dom { 𝑧 } = ∅ ) |
29 |
25 28
|
eqtr3id |
⊢ ( ¬ 𝑧 ∈ ( V × V ) → ran ◡ { 𝑧 } = ∅ ) |
30 |
|
relcnv |
⊢ Rel ◡ { 𝑧 } |
31 |
|
relrn0 |
⊢ ( Rel ◡ { 𝑧 } → ( ◡ { 𝑧 } = ∅ ↔ ran ◡ { 𝑧 } = ∅ ) ) |
32 |
30 31
|
ax-mp |
⊢ ( ◡ { 𝑧 } = ∅ ↔ ran ◡ { 𝑧 } = ∅ ) |
33 |
29 32
|
sylibr |
⊢ ( ¬ 𝑧 ∈ ( V × V ) → ◡ { 𝑧 } = ∅ ) |
34 |
33 10
|
eqeltrdi |
⊢ ( ¬ 𝑧 ∈ ( V × V ) → ◡ { 𝑧 } ∈ Fin ) |
35 |
24 34
|
pm2.61i |
⊢ ◡ { 𝑧 } ∈ Fin |
36 |
|
unfi |
⊢ ( ( ◡ 𝑦 ∈ Fin ∧ ◡ { 𝑧 } ∈ Fin ) → ( ◡ 𝑦 ∪ ◡ { 𝑧 } ) ∈ Fin ) |
37 |
35 36
|
mpan2 |
⊢ ( ◡ 𝑦 ∈ Fin → ( ◡ 𝑦 ∪ ◡ { 𝑧 } ) ∈ Fin ) |
38 |
12 37
|
eqeltrid |
⊢ ( ◡ 𝑦 ∈ Fin → ◡ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
39 |
38
|
a1i |
⊢ ( 𝑦 ∈ Fin → ( ◡ 𝑦 ∈ Fin → ◡ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
40 |
2 4 6 8 11 39
|
findcard2 |
⊢ ( 𝐴 ∈ Fin → ◡ 𝐴 ∈ Fin ) |