Metamath Proof Explorer


Theorem cnv0

Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021) Avoid ax-12 . (Revised by TM, 31-Jan-2026)

Ref Expression
Assertion cnv0 ∅ = ∅

Proof

Step Hyp Ref Expression
1 br0 ¬ 𝑦𝑧
2 1 intnan ¬ ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 )
3 2 nex ¬ ∃ 𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 )
4 3 nex ¬ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 )
5 df-cnv ∅ = { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝑦𝑧 }
6 5 eleq2i ( 𝑥 ∅ ↔ 𝑥 ∈ { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝑦𝑧 } )
7 elopabw ( 𝑥 ∈ V → ( 𝑥 ∈ { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝑦𝑧 } ↔ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 ) ) )
8 7 elv ( 𝑥 ∈ { ⟨ 𝑧 , 𝑦 ⟩ ∣ 𝑦𝑧 } ↔ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 ) )
9 6 8 bitri ( 𝑥 ∅ ↔ ∃ 𝑧𝑦 ( 𝑥 = ⟨ 𝑧 , 𝑦 ⟩ ∧ 𝑦𝑧 ) )
10 4 9 mtbir ¬ 𝑥
11 10 nel0 ∅ = ∅