Metamath Proof Explorer


Theorem cnv0

Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)

Ref Expression
Assertion cnv0
|- `' (/) = (/)

Proof

Step Hyp Ref Expression
1 br0
 |-  -. y (/) z
2 1 intnan
 |-  -. ( x = <. z , y >. /\ y (/) z )
3 2 nex
 |-  -. E. y ( x = <. z , y >. /\ y (/) z )
4 3 nex
 |-  -. E. z E. y ( x = <. z , y >. /\ y (/) z )
5 df-cnv
 |-  `' (/) = { <. z , y >. | y (/) z }
6 df-opab
 |-  { <. z , y >. | y (/) z } = { x | E. z E. y ( x = <. z , y >. /\ y (/) z ) }
7 5 6 eqtri
 |-  `' (/) = { x | E. z E. y ( x = <. z , y >. /\ y (/) z ) }
8 7 abeq2i
 |-  ( x e. `' (/) <-> E. z E. y ( x = <. z , y >. /\ y (/) z ) )
9 4 8 mtbir
 |-  -. x e. `' (/)
10 9 nel0
 |-  `' (/) = (/)