Metamath Proof Explorer


Theorem mtbir

Description: An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994) (Proof shortened by Wolf Lammen, 14-Oct-2012)

Ref Expression
Hypotheses mtbir.1
|- -. ps
mtbir.2
|- ( ph <-> ps )
Assertion mtbir
|- -. ph

Proof

Step Hyp Ref Expression
1 mtbir.1
 |-  -. ps
2 mtbir.2
 |-  ( ph <-> ps )
3 2 bicomi
 |-  ( ps <-> ph )
4 1 3 mtbi
 |-  -. ph