Metamath Proof Explorer


Theorem cnvfi

Description: If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014) Avoid ax-pow . (Revised by BTernaryTau, 9-Sep-2024)

Ref Expression
Assertion cnvfi A Fin A -1 Fin

Proof

Step Hyp Ref Expression
1 cnveq x = x -1 = -1
2 1 eleq1d x = x -1 Fin -1 Fin
3 cnveq x = y x -1 = y -1
4 3 eleq1d x = y x -1 Fin y -1 Fin
5 cnveq x = y z x -1 = y z -1
6 5 eleq1d x = y z x -1 Fin y z -1 Fin
7 cnveq x = A x -1 = A -1
8 7 eleq1d x = A x -1 Fin A -1 Fin
9 cnv0 -1 =
10 0fin Fin
11 9 10 eqeltri -1 Fin
12 cnvun y z -1 = y -1 z -1
13 elvv z V × V u v z = u v
14 sneq z = u v z = u v
15 cnveq z = u v z -1 = u v -1
16 vex u V
17 vex v V
18 16 17 cnvsn u v -1 = v u
19 15 18 eqtrdi z = u v z -1 = v u
20 14 19 syl z = u v z -1 = v u
21 snfi v u Fin
22 20 21 eqeltrdi z = u v z -1 Fin
23 22 exlimivv u v z = u v z -1 Fin
24 13 23 sylbi z V × V z -1 Fin
25 dfdm4 dom z = ran z -1
26 dmsnn0 z V × V dom z
27 26 biimpri dom z z V × V
28 27 necon1bi ¬ z V × V dom z =
29 25 28 eqtr3id ¬ z V × V ran z -1 =
30 relcnv Rel z -1
31 relrn0 Rel z -1 z -1 = ran z -1 =
32 30 31 ax-mp z -1 = ran z -1 =
33 29 32 sylibr ¬ z V × V z -1 =
34 33 10 eqeltrdi ¬ z V × V z -1 Fin
35 24 34 pm2.61i z -1 Fin
36 unfi y -1 Fin z -1 Fin y -1 z -1 Fin
37 35 36 mpan2 y -1 Fin y -1 z -1 Fin
38 12 37 eqeltrid y -1 Fin y z -1 Fin
39 38 a1i y Fin y -1 Fin y z -1 Fin
40 2 4 6 8 11 39 findcard2 A Fin A -1 Fin