Description: A natural number is either 0 or a successor. (Contributed by NM, 27-May-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0suc | |- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne | |- ( A =/= (/) <-> -. A = (/) )  | 
						|
| 2 | nnsuc | |- ( ( A e. _om /\ A =/= (/) ) -> E. x e. _om A = suc x )  | 
						|
| 3 | 1 2 | sylan2br | |- ( ( A e. _om /\ -. A = (/) ) -> E. x e. _om A = suc x )  | 
						
| 4 | 3 | ex | |- ( A e. _om -> ( -. A = (/) -> E. x e. _om A = suc x ) )  | 
						
| 5 | 4 | orrd | |- ( A e. _om -> ( A = (/) \/ E. x e. _om A = suc x ) )  |