Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ≈ 𝑧 ↔ ∅ ≈ 𝑧 ) ) |
2 |
|
eqeq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 = 𝑧 ↔ ∅ = 𝑧 ) ) |
3 |
1 2
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ( ∅ ≈ 𝑧 → ∅ = 𝑧 ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝑥 = ∅ → ( ∀ 𝑧 ∈ ω ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∈ ω ( ∅ ≈ 𝑧 → ∅ = 𝑧 ) ) ) |
5 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑧 ↔ 𝑦 ≈ 𝑧 ) ) |
6 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) ) |
8 |
7
|
ralbidv |
⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ ω ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) ) |
9 |
|
breq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 ≈ 𝑧 ↔ suc 𝑦 ≈ 𝑧 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝑥 = 𝑧 ↔ suc 𝑦 = 𝑧 ) ) |
11 |
9 10
|
imbi12d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ( suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧 ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑥 = suc 𝑦 → ( ∀ 𝑧 ∈ ω ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∈ ω ( suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧 ) ) ) |
13 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑧 ↔ 𝐴 ≈ 𝑧 ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑧 ↔ 𝐴 = 𝑧 ) ) |
15 |
13 14
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ( 𝐴 ≈ 𝑧 → 𝐴 = 𝑧 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑧 ∈ ω ( 𝑥 ≈ 𝑧 → 𝑥 = 𝑧 ) ↔ ∀ 𝑧 ∈ ω ( 𝐴 ≈ 𝑧 → 𝐴 = 𝑧 ) ) ) |
17 |
|
0fin |
⊢ ∅ ∈ Fin |
18 |
|
ensymfib |
⊢ ( ∅ ∈ Fin → ( ∅ ≈ 𝑧 ↔ 𝑧 ≈ ∅ ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ∅ ≈ 𝑧 ↔ 𝑧 ≈ ∅ ) |
20 |
|
en0 |
⊢ ( 𝑧 ≈ ∅ ↔ 𝑧 = ∅ ) |
21 |
|
eqcom |
⊢ ( 𝑧 = ∅ ↔ ∅ = 𝑧 ) |
22 |
20 21
|
bitri |
⊢ ( 𝑧 ≈ ∅ ↔ ∅ = 𝑧 ) |
23 |
19 22
|
sylbb |
⊢ ( ∅ ≈ 𝑧 → ∅ = 𝑧 ) |
24 |
23
|
rgenw |
⊢ ∀ 𝑧 ∈ ω ( ∅ ≈ 𝑧 → ∅ = 𝑧 ) |
25 |
|
nn0suc |
⊢ ( 𝑤 ∈ ω → ( 𝑤 = ∅ ∨ ∃ 𝑧 ∈ ω 𝑤 = suc 𝑧 ) ) |
26 |
|
en0 |
⊢ ( suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅ ) |
27 |
|
breq2 |
⊢ ( 𝑤 = ∅ → ( suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 ≈ ∅ ) ) |
28 |
|
eqeq2 |
⊢ ( 𝑤 = ∅ → ( suc 𝑦 = 𝑤 ↔ suc 𝑦 = ∅ ) ) |
29 |
27 28
|
bibi12d |
⊢ ( 𝑤 = ∅ → ( ( suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 = 𝑤 ) ↔ ( suc 𝑦 ≈ ∅ ↔ suc 𝑦 = ∅ ) ) ) |
30 |
26 29
|
mpbiri |
⊢ ( 𝑤 = ∅ → ( suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 = 𝑤 ) ) |
31 |
30
|
biimpd |
⊢ ( 𝑤 = ∅ → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) |
32 |
31
|
a1i |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( 𝑤 = ∅ → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) |
33 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 ∈ ω |
34 |
|
nfra1 |
⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) |
35 |
33 34
|
nfan |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) |
36 |
|
nfv |
⊢ Ⅎ 𝑧 ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) |
37 |
|
vex |
⊢ 𝑦 ∈ V |
38 |
37
|
phplem2 |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( suc 𝑦 ≈ suc 𝑧 → 𝑦 ≈ 𝑧 ) ) |
39 |
38
|
imim1d |
⊢ ( ( 𝑦 ∈ ω ∧ 𝑧 ∈ ω ) → ( ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ( suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧 ) ) ) |
40 |
39
|
ex |
⊢ ( 𝑦 ∈ ω → ( 𝑧 ∈ ω → ( ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ( suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧 ) ) ) ) |
41 |
40
|
a2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝑧 ∈ ω → ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( 𝑧 ∈ ω → ( suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧 ) ) ) ) |
42 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ( 𝑧 ∈ ω → ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) ) |
43 |
41 42
|
impel |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( 𝑧 ∈ ω → ( suc 𝑦 ≈ suc 𝑧 → 𝑦 = 𝑧 ) ) ) |
44 |
|
suceq |
⊢ ( 𝑦 = 𝑧 → suc 𝑦 = suc 𝑧 ) |
45 |
43 44
|
syl8 |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( 𝑧 ∈ ω → ( suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧 ) ) ) |
46 |
|
breq2 |
⊢ ( 𝑤 = suc 𝑧 → ( suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 ≈ suc 𝑧 ) ) |
47 |
|
eqeq2 |
⊢ ( 𝑤 = suc 𝑧 → ( suc 𝑦 = 𝑤 ↔ suc 𝑦 = suc 𝑧 ) ) |
48 |
46 47
|
imbi12d |
⊢ ( 𝑤 = suc 𝑧 → ( ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ↔ ( suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧 ) ) ) |
49 |
48
|
biimprcd |
⊢ ( ( suc 𝑦 ≈ suc 𝑧 → suc 𝑦 = suc 𝑧 ) → ( 𝑤 = suc 𝑧 → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) |
50 |
45 49
|
syl6 |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( 𝑧 ∈ ω → ( 𝑤 = suc 𝑧 → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) ) |
51 |
35 36 50
|
rexlimd |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( ∃ 𝑧 ∈ ω 𝑤 = suc 𝑧 → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) |
52 |
32 51
|
jaod |
⊢ ( ( 𝑦 ∈ ω ∧ ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) ) → ( ( 𝑤 = ∅ ∨ ∃ 𝑧 ∈ ω 𝑤 = suc 𝑧 ) → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) |
53 |
52
|
ex |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ( ( 𝑤 = ∅ ∨ ∃ 𝑧 ∈ ω 𝑤 = suc 𝑧 ) → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) ) |
54 |
25 53
|
syl7 |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ( 𝑤 ∈ ω → ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) ) |
55 |
54
|
ralrimdv |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ∀ 𝑤 ∈ ω ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ) ) |
56 |
|
breq2 |
⊢ ( 𝑤 = 𝑧 → ( suc 𝑦 ≈ 𝑤 ↔ suc 𝑦 ≈ 𝑧 ) ) |
57 |
|
eqeq2 |
⊢ ( 𝑤 = 𝑧 → ( suc 𝑦 = 𝑤 ↔ suc 𝑦 = 𝑧 ) ) |
58 |
56 57
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ↔ ( suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧 ) ) ) |
59 |
58
|
cbvralvw |
⊢ ( ∀ 𝑤 ∈ ω ( suc 𝑦 ≈ 𝑤 → suc 𝑦 = 𝑤 ) ↔ ∀ 𝑧 ∈ ω ( suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧 ) ) |
60 |
55 59
|
syl6ib |
⊢ ( 𝑦 ∈ ω → ( ∀ 𝑧 ∈ ω ( 𝑦 ≈ 𝑧 → 𝑦 = 𝑧 ) → ∀ 𝑧 ∈ ω ( suc 𝑦 ≈ 𝑧 → suc 𝑦 = 𝑧 ) ) ) |
61 |
4 8 12 16 24 60
|
finds |
⊢ ( 𝐴 ∈ ω → ∀ 𝑧 ∈ ω ( 𝐴 ≈ 𝑧 → 𝐴 = 𝑧 ) ) |
62 |
|
breq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 ≈ 𝑧 ↔ 𝐴 ≈ 𝐵 ) ) |
63 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 = 𝑧 ↔ 𝐴 = 𝐵 ) ) |
64 |
62 63
|
imbi12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 ≈ 𝑧 → 𝐴 = 𝑧 ) ↔ ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) ) |
65 |
64
|
rspcv |
⊢ ( 𝐵 ∈ ω → ( ∀ 𝑧 ∈ ω ( 𝐴 ≈ 𝑧 → 𝐴 = 𝑧 ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) ) |
66 |
61 65
|
mpan9 |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 → 𝐴 = 𝐵 ) ) |
67 |
|
enrefnn |
⊢ ( 𝐴 ∈ ω → 𝐴 ≈ 𝐴 ) |
68 |
|
breq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≈ 𝐴 ↔ 𝐴 ≈ 𝐵 ) ) |
69 |
67 68
|
syl5ibcom |
⊢ ( 𝐴 ∈ ω → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 = 𝐵 → 𝐴 ≈ 𝐵 ) ) |
71 |
66 70
|
impbid |
⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵 ) ) |