Metamath Proof Explorer


Theorem rsp

Description: Restricted specialization. (Contributed by NM, 17-Oct-1996)

Ref Expression
Assertion rsp ( ∀ 𝑥𝐴 𝜑 → ( 𝑥𝐴𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 sp ( ∀ 𝑥 ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜑 ) )
3 1 2 sylbi ( ∀ 𝑥𝐴 𝜑 → ( 𝑥𝐴𝜑 ) )