Metamath Proof Explorer


Theorem entrfil

Description: Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr ). (Contributed by BTernaryTau, 10-Sep-2024)

Ref Expression
Assertion entrfil AFinABBCAC

Proof

Step Hyp Ref Expression
1 bren BCff:B1-1 ontoC
2 bren ABgg:A1-1 ontoB
3 exdistrv gfg:A1-1 ontoBf:B1-1 ontoCgg:A1-1 ontoBff:B1-1 ontoC
4 19.42vv gfAFing:A1-1 ontoBf:B1-1 ontoCAFingfg:A1-1 ontoBf:B1-1 ontoC
5 f1oco f:B1-1 ontoCg:A1-1 ontoBfg:A1-1 ontoC
6 5 ancoms g:A1-1 ontoBf:B1-1 ontoCfg:A1-1 ontoC
7 f1oenfi AFinfg:A1-1 ontoCAC
8 6 7 sylan2 AFing:A1-1 ontoBf:B1-1 ontoCAC
9 8 exlimivv gfAFing:A1-1 ontoBf:B1-1 ontoCAC
10 4 9 sylbir AFingfg:A1-1 ontoBf:B1-1 ontoCAC
11 3 10 sylan2br AFingg:A1-1 ontoBff:B1-1 ontoCAC
12 11 3impb AFingg:A1-1 ontoBff:B1-1 ontoCAC
13 2 12 syl3an2b AFinABff:B1-1 ontoCAC
14 1 13 syl3an3b AFinABBCAC