Step |
Hyp |
Ref |
Expression |
1 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
2 |
|
pssss |
|- ( B C. A -> B C_ A ) |
3 |
|
ssdomfi |
|- ( A e. Fin -> ( B C_ A -> B ~<_ A ) ) |
4 |
3
|
imp |
|- ( ( A e. Fin /\ B C_ A ) -> B ~<_ A ) |
5 |
1 2 4
|
syl2an |
|- ( ( A e. _om /\ B C. A ) -> B ~<_ A ) |
6 |
|
php |
|- ( ( A e. _om /\ B C. A ) -> -. A ~~ B ) |
7 |
|
ensymfib |
|- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |
8 |
7
|
biimprd |
|- ( A e. Fin -> ( B ~~ A -> A ~~ B ) ) |
9 |
1 8
|
syl |
|- ( A e. _om -> ( B ~~ A -> A ~~ B ) ) |
10 |
9
|
adantr |
|- ( ( A e. _om /\ B C. A ) -> ( B ~~ A -> A ~~ B ) ) |
11 |
6 10
|
mtod |
|- ( ( A e. _om /\ B C. A ) -> -. B ~~ A ) |
12 |
|
brsdom |
|- ( B ~< A <-> ( B ~<_ A /\ -. B ~~ A ) ) |
13 |
5 11 12
|
sylanbrc |
|- ( ( A e. _om /\ B C. A ) -> B ~< A ) |