Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 12-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdomfi | |- ( B e. Fin -> ( A C_ B -> A ~<_ B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi | |- ( _I |` A ) : A -1-1-onto-> A |
|
2 | f1of1 | |- ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A -1-1-> A ) |
|
3 | 1 2 | ax-mp | |- ( _I |` A ) : A -1-1-> A |
4 | f1ss | |- ( ( ( _I |` A ) : A -1-1-> A /\ A C_ B ) -> ( _I |` A ) : A -1-1-> B ) |
|
5 | 3 4 | mpan | |- ( A C_ B -> ( _I |` A ) : A -1-1-> B ) |
6 | f1domfi | |- ( ( B e. Fin /\ ( _I |` A ) : A -1-1-> B ) -> A ~<_ B ) |
|
7 | 5 6 | sylan2 | |- ( ( B e. Fin /\ A C_ B ) -> A ~<_ B ) |
8 | 7 | ex | |- ( B e. Fin -> ( A C_ B -> A ~<_ B ) ) |