Metamath Proof Explorer


Theorem ssdomfi2

Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion ssdomfi2
|- ( ( A e. Fin /\ B e. V /\ A C_ B ) -> A ~<_ B )

Proof

Step Hyp Ref Expression
1 f1oi
 |-  ( _I |` A ) : A -1-1-onto-> A
2 f1of1
 |-  ( ( _I |` A ) : A -1-1-onto-> A -> ( _I |` A ) : A -1-1-> A )
3 1 2 ax-mp
 |-  ( _I |` A ) : A -1-1-> A
4 f1ss
 |-  ( ( ( _I |` A ) : A -1-1-> A /\ A C_ B ) -> ( _I |` A ) : A -1-1-> B )
5 3 4 mpan
 |-  ( A C_ B -> ( _I |` A ) : A -1-1-> B )
6 f1domfi2
 |-  ( ( A e. Fin /\ B e. V /\ ( _I |` A ) : A -1-1-> B ) -> A ~<_ B )
7 5 6 syl3an3
 |-  ( ( A e. Fin /\ B e. V /\ A C_ B ) -> A ~<_ B )