Metamath Proof Explorer


Theorem ssdomfi2

Description: A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion ssdomfi2 ( ( 𝐴 ∈ Fin ∧ 𝐵𝑉𝐴𝐵 ) → 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴
2 f1of1 ( ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 → ( I ↾ 𝐴 ) : 𝐴1-1𝐴 )
3 1 2 ax-mp ( I ↾ 𝐴 ) : 𝐴1-1𝐴
4 f1ss ( ( ( I ↾ 𝐴 ) : 𝐴1-1𝐴𝐴𝐵 ) → ( I ↾ 𝐴 ) : 𝐴1-1𝐵 )
5 3 4 mpan ( 𝐴𝐵 → ( I ↾ 𝐴 ) : 𝐴1-1𝐵 )
6 f1domfi2 ( ( 𝐴 ∈ Fin ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴1-1𝐵 ) → 𝐴𝐵 )
7 5 6 syl3an3 ( ( 𝐴 ∈ Fin ∧ 𝐵𝑉𝐴𝐵 ) → 𝐴𝐵 )