Metamath Proof Explorer


Theorem ssdomfi

Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 12-Nov-2024)

Ref Expression
Assertion ssdomfi ( 𝐵 ∈ Fin → ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴
2 f1of1 ( ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 → ( I ↾ 𝐴 ) : 𝐴1-1𝐴 )
3 1 2 ax-mp ( I ↾ 𝐴 ) : 𝐴1-1𝐴
4 f1ss ( ( ( I ↾ 𝐴 ) : 𝐴1-1𝐴𝐴𝐵 ) → ( I ↾ 𝐴 ) : 𝐴1-1𝐵 )
5 3 4 mpan ( 𝐴𝐵 → ( I ↾ 𝐴 ) : 𝐴1-1𝐵 )
6 f1domfi ( ( 𝐵 ∈ Fin ∧ ( I ↾ 𝐴 ) : 𝐴1-1𝐵 ) → 𝐴𝐵 )
7 5 6 sylan2 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵 ) → 𝐴𝐵 )
8 7 ex ( 𝐵 ∈ Fin → ( 𝐴𝐵𝐴𝐵 ) )