Description: A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg ). (Contributed by BTernaryTau, 12-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdomfi | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 | |
2 | f1of1 | ⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐴 ) | |
3 | 1 2 | ax-mp | ⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐴 |
4 | f1ss | ⊢ ( ( ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) | |
5 | 3 4 | mpan | ⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
6 | f1domfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) | |
7 | 5 6 | sylan2 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
8 | 7 | ex | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |