Metamath Proof Explorer


Theorem ralrimivva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis ralrimivva.1 φ x A y B ψ
Assertion ralrimivva φ x A y B ψ

Proof

Step Hyp Ref Expression
1 ralrimivva.1 φ x A y B ψ
2 1 ex φ x A y B ψ
3 2 ralrimivv φ x A y B ψ