Metamath Proof Explorer


Theorem ralrimivva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis ralrimivva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝜓 )
Assertion ralrimivva ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )

Proof

Step Hyp Ref Expression
1 ralrimivva.1 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐵 ) ) → 𝜓 )
2 1 ex ( 𝜑 → ( ( 𝑥𝐴𝑦𝐵 ) → 𝜓 ) )
3 2 ralrimivv ( 𝜑 → ∀ 𝑥𝐴𝑦𝐵 𝜓 )