Metamath Proof Explorer


Theorem ralrimivva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011)

Ref Expression
Hypothesis ralrimivva.1
|- ( ( ph /\ ( x e. A /\ y e. B ) ) -> ps )
Assertion ralrimivva
|- ( ph -> A. x e. A A. y e. B ps )

Proof

Step Hyp Ref Expression
1 ralrimivva.1
 |-  ( ( ph /\ ( x e. A /\ y e. B ) ) -> ps )
2 1 ex
 |-  ( ph -> ( ( x e. A /\ y e. B ) -> ps ) )
3 2 ralrimivv
 |-  ( ph -> A. x e. A A. y e. B ps )