Metamath Proof Explorer


Theorem ralrimivv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004)

Ref Expression
Hypothesis ralrimivv.1
|- ( ph -> ( ( x e. A /\ y e. B ) -> ps ) )
Assertion ralrimivv
|- ( ph -> A. x e. A A. y e. B ps )

Proof

Step Hyp Ref Expression
1 ralrimivv.1
 |-  ( ph -> ( ( x e. A /\ y e. B ) -> ps ) )
2 1 expd
 |-  ( ph -> ( x e. A -> ( y e. B -> ps ) ) )
3 2 ralrimdv
 |-  ( ph -> ( x e. A -> A. y e. B ps ) )
4 3 ralrimiv
 |-  ( ph -> A. x e. A A. y e. B ps )