Metamath Proof Explorer


Theorem ralrimdvv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005)

Ref Expression
Hypothesis ralrimdvv.1 φψxAyBχ
Assertion ralrimdvv φψxAyBχ

Proof

Step Hyp Ref Expression
1 ralrimdvv.1 φψxAyBχ
2 1 imp φψxAyBχ
3 2 ralrimivv φψxAyBχ
4 3 ex φψxAyBχ