| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 2 |
|
fof |
⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 4 |
|
domnsym |
⊢ ( 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) → ¬ ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐵 ) |
| 5 |
|
simp3 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐵 ∈ Fin ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ≈ 𝐵 ) |
| 7 |
|
enfii |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ) → 𝐴 ∈ Fin ) |
| 8 |
5 6 7
|
syl2anc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 ∈ Fin ) |
| 9 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐴 ∈ Fin ) |
| 10 |
|
difssd |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) |
| 11 |
|
simplrr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑦 ∈ 𝐴 ) |
| 12 |
|
neldifsn |
⊢ ¬ 𝑦 ∈ ( 𝐴 ∖ { 𝑦 } ) |
| 13 |
|
nelne1 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ ( 𝐴 ∖ { 𝑦 } ) ) → 𝐴 ≠ ( 𝐴 ∖ { 𝑦 } ) ) |
| 14 |
11 12 13
|
sylancl |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐴 ≠ ( 𝐴 ∖ { 𝑦 } ) ) |
| 15 |
14
|
necomd |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ≠ 𝐴 ) |
| 16 |
|
df-pss |
⊢ ( ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ↔ ( ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ∧ ( 𝐴 ∖ { 𝑦 } ) ≠ 𝐴 ) ) |
| 17 |
10 15 16
|
sylanbrc |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) |
| 18 |
|
php3 |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∖ { 𝑦 } ) ⊊ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐴 ) |
| 19 |
9 17 18
|
syl2anc |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐴 ) |
| 20 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝐴 ≈ 𝐵 ) |
| 21 |
|
sdomentr |
⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐴 ∧ 𝐴 ≈ 𝐵 ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐵 ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝐴 ∖ { 𝑦 } ) ≺ 𝐵 ) |
| 23 |
4 22
|
nsyl3 |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ¬ 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 24 |
8
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐴 ∈ Fin ) |
| 25 |
|
difss |
⊢ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 |
| 26 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) |
| 27 |
24 25 26
|
sylancl |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ) |
| 28 |
3
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 29 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ∖ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) ⟶ 𝐵 ) |
| 30 |
28 25 29
|
sylancl |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) ⟶ 𝐵 ) |
| 31 |
1
|
adantr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) |
| 32 |
|
foelrn |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) ) |
| 33 |
31 32
|
sylan |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) ) |
| 34 |
|
simprll |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 35 |
|
simprrr |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝑥 ≠ 𝑦 ) |
| 36 |
|
eldifsn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 𝑦 ) ) |
| 37 |
34 35 36
|
sylanbrc |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ) |
| 38 |
|
simprrl |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 39 |
38
|
eqcomd |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 40 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 41 |
40
|
rspceeqv |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { 𝑦 } ) ∧ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 42 |
37 39 41
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 43 |
|
fveqeq2 |
⊢ ( 𝑢 = 𝑦 → ( ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 44 |
43
|
rexbidv |
⊢ ( 𝑢 = 𝑦 → ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 45 |
42 44
|
syl5ibrcom |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝑢 = 𝑦 → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 46 |
45
|
adantr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑢 = 𝑦 → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 47 |
46
|
imp |
⊢ ( ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑢 = 𝑦 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 48 |
|
eldifsn |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ { 𝑦 } ) ↔ ( 𝑢 ∈ 𝐴 ∧ 𝑢 ≠ 𝑦 ) ) |
| 49 |
|
eqid |
⊢ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) |
| 50 |
|
fveq2 |
⊢ ( 𝑤 = 𝑢 → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑢 ) ) |
| 51 |
50
|
rspceeqv |
⊢ ( ( 𝑢 ∈ ( 𝐴 ∖ { 𝑦 } ) ∧ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑢 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 52 |
49 51
|
mpan2 |
⊢ ( 𝑢 ∈ ( 𝐴 ∖ { 𝑦 } ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 53 |
48 52
|
sylbir |
⊢ ( ( 𝑢 ∈ 𝐴 ∧ 𝑢 ≠ 𝑦 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 54 |
53
|
adantll |
⊢ ( ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑢 ≠ 𝑦 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 55 |
47 54
|
pm2.61dane |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 56 |
|
fvres |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) → ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) → ( 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ↔ 𝑧 = ( 𝐹 ‘ 𝑤 ) ) ) |
| 58 |
57
|
rexbiia |
⊢ ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ) |
| 59 |
|
eqeq1 |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 60 |
59
|
rexbidv |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( 𝐹 ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 61 |
58 60
|
bitrid |
⊢ ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ( ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ↔ ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) ( 𝐹 ‘ 𝑢 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 62 |
55 61
|
syl5ibrcom |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ( 𝑧 = ( 𝐹 ‘ 𝑢 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) ) |
| 63 |
62
|
rexlimdva |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) ) |
| 64 |
63
|
imp |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ ∃ 𝑢 ∈ 𝐴 𝑧 = ( 𝐹 ‘ 𝑢 ) ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) |
| 65 |
33 64
|
syldan |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) ∧ 𝑧 ∈ 𝐵 ) → ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) |
| 66 |
65
|
ralrimiva |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) |
| 67 |
|
dffo3 |
⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) –onto→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) ⟶ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ∃ 𝑤 ∈ ( 𝐴 ∖ { 𝑦 } ) 𝑧 = ( ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) ‘ 𝑤 ) ) ) |
| 68 |
30 66 67
|
sylanbrc |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) –onto→ 𝐵 ) |
| 69 |
|
fodomfi |
⊢ ( ( ( 𝐴 ∖ { 𝑦 } ) ∈ Fin ∧ ( 𝐹 ↾ ( 𝐴 ∖ { 𝑦 } ) ) : ( 𝐴 ∖ { 𝑦 } ) –onto→ 𝐵 ) → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 70 |
27 68 69
|
syl2anc |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) ) → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 71 |
70
|
anassrs |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) |
| 72 |
71
|
expr |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( 𝑥 ≠ 𝑦 → 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) ) ) |
| 73 |
72
|
necon1bd |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → ( ¬ 𝐵 ≼ ( 𝐴 ∖ { 𝑦 } ) → 𝑥 = 𝑦 ) ) |
| 74 |
23 73
|
mpd |
⊢ ( ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 75 |
74
|
ex |
⊢ ( ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 76 |
75
|
ralrimivva |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 77 |
|
dff13 |
⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 78 |
3 76 77
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 79 |
|
df-f1o |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) |
| 80 |
78 1 79
|
sylanbrc |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |