Description: Deduction from commutative law for inequality. (Contributed by NM, 12-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | necomd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
Assertion | necomd | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necomd.1 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
2 | necom | ⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) | |
3 | 1 2 | sylib | ⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |