Metamath Proof Explorer


Theorem dffo3

Description: An onto mapping expressed in terms of function values. (Contributed by NM, 29-Oct-2006)

Ref Expression
Assertion dffo3 F:AontoBF:AByBxAy=Fx

Proof

Step Hyp Ref Expression
1 dffo2 F:AontoBF:ABranF=B
2 ffn F:ABFFnA
3 fnrnfv FFnAranF=y|xAy=Fx
4 3 eqeq1d FFnAranF=By|xAy=Fx=B
5 2 4 syl F:ABranF=By|xAy=Fx=B
6 dfbi2 xAy=FxyBxAy=FxyByBxAy=Fx
7 simpr F:ABxAy=Fxy=Fx
8 ffvelcdm F:ABxAFxB
9 8 adantr F:ABxAy=FxFxB
10 7 9 eqeltrd F:ABxAy=FxyB
11 10 rexlimdva2 F:ABxAy=FxyB
12 11 biantrurd F:AByBxAy=FxxAy=FxyByBxAy=Fx
13 6 12 bitr4id F:ABxAy=FxyByBxAy=Fx
14 13 albidv F:AByxAy=FxyByyBxAy=Fx
15 eqabcb y|xAy=Fx=ByxAy=FxyB
16 df-ral yBxAy=FxyyBxAy=Fx
17 14 15 16 3bitr4g F:ABy|xAy=Fx=ByBxAy=Fx
18 5 17 bitrd F:ABranF=ByBxAy=Fx
19 18 pm5.32i F:ABranF=BF:AByBxAy=Fx
20 1 19 bitri F:AontoBF:AByBxAy=Fx