Metamath Proof Explorer


Theorem dffo4

Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007)

Ref Expression
Assertion dffo4 F:AontoBF:AByBxAxFy

Proof

Step Hyp Ref Expression
1 dffo2 F:AontoBF:ABranF=B
2 simpl F:ABranF=BF:AB
3 vex yV
4 3 elrn yranFxxFy
5 eleq2 ranF=ByranFyB
6 4 5 bitr3id ranF=BxxFyyB
7 6 biimpar ranF=ByBxxFy
8 7 adantll F:ABranF=ByBxxFy
9 ffn F:ABFFnA
10 fnbr FFnAxFyxA
11 10 ex FFnAxFyxA
12 9 11 syl F:ABxFyxA
13 12 ancrd F:ABxFyxAxFy
14 13 eximdv F:ABxxFyxxAxFy
15 df-rex xAxFyxxAxFy
16 14 15 imbitrrdi F:ABxxFyxAxFy
17 16 ad2antrr F:ABranF=ByBxxFyxAxFy
18 8 17 mpd F:ABranF=ByBxAxFy
19 18 ralrimiva F:ABranF=ByBxAxFy
20 2 19 jca F:ABranF=BF:AByBxAxFy
21 1 20 sylbi F:AontoBF:AByBxAxFy
22 fnbrfvb FFnAxAFx=yxFy
23 22 biimprd FFnAxAxFyFx=y
24 eqcom Fx=yy=Fx
25 23 24 imbitrdi FFnAxAxFyy=Fx
26 9 25 sylan F:ABxAxFyy=Fx
27 26 reximdva F:ABxAxFyxAy=Fx
28 27 ralimdv F:AByBxAxFyyBxAy=Fx
29 28 imdistani F:AByBxAxFyF:AByBxAy=Fx
30 dffo3 F:AontoBF:AByBxAy=Fx
31 29 30 sylibr F:AByBxAxFyF:AontoB
32 21 31 impbii F:AontoBF:AByBxAxFy