Metamath Proof Explorer


Theorem dffo5

Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007)

Ref Expression
Assertion dffo5 F:AontoBF:AByBxxFy

Proof

Step Hyp Ref Expression
1 dffo4 F:AontoBF:AByBxAxFy
2 rexex xAxFyxxFy
3 2 ralimi yBxAxFyyBxxFy
4 3 anim2i F:AByBxAxFyF:AByBxxFy
5 ffn F:ABFFnA
6 fnbr FFnAxFyxA
7 6 ex FFnAxFyxA
8 5 7 syl F:ABxFyxA
9 8 ancrd F:ABxFyxAxFy
10 9 eximdv F:ABxxFyxxAxFy
11 df-rex xAxFyxxAxFy
12 10 11 imbitrrdi F:ABxxFyxAxFy
13 12 ralimdv F:AByBxxFyyBxAxFy
14 13 imdistani F:AByBxxFyF:AByBxAxFy
15 4 14 impbii F:AByBxAxFyF:AByBxxFy
16 1 15 bitri F:AontoBF:AByBxxFy