Metamath Proof Explorer


Theorem rexex

Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995)

Ref Expression
Assertion rexex xAφxφ

Proof

Step Hyp Ref Expression
1 df-rex xAφxxAφ
2 exsimpr xxAφxφ
3 1 2 sylbi xAφxφ