Metamath Proof Explorer


Theorem eqabcb

Description: Equality of a class variable and a class abstraction. Commuted form of eqabb . (Contributed by NM, 20-Aug-1993)

Ref Expression
Assertion eqabcb x|φ=AxφxA

Proof

Step Hyp Ref Expression
1 eqabb A=x|φxxAφ
2 eqcom x|φ=AA=x|φ
3 bicom φxAxAφ
4 3 albii xφxAxxAφ
5 1 2 4 3bitr4i x|φ=AxφxA