Metamath Proof Explorer


Theorem eqabrd

Description: Equality of a class variable and a class abstraction (deduction form of eqabb ). (Contributed by NM, 16-Nov-1995)

Ref Expression
Hypothesis eqabrd.1 φA=x|ψ
Assertion eqabrd φxAψ

Proof

Step Hyp Ref Expression
1 eqabrd.1 φA=x|ψ
2 1 eleq2d φxAxx|ψ
3 abid xx|ψψ
4 2 3 bitrdi φxAψ