Metamath Proof Explorer


Theorem 0sdomg

Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion 0sdomg AVAA

Proof

Step Hyp Ref Expression
1 0domg AVA
2 brsdom AA¬A
3 2 baib AA¬A
4 1 3 syl AVA¬A
5 en0r AA=
6 5 necon3bbii ¬AA
7 4 6 bitrdi AVAA