Metamath Proof Explorer


Theorem 0sdomg

Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM, 23-Mar-2006) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion 0sdomg
|- ( A e. V -> ( (/) ~< A <-> A =/= (/) ) )

Proof

Step Hyp Ref Expression
1 0domg
 |-  ( A e. V -> (/) ~<_ A )
2 brsdom
 |-  ( (/) ~< A <-> ( (/) ~<_ A /\ -. (/) ~~ A ) )
3 2 baib
 |-  ( (/) ~<_ A -> ( (/) ~< A <-> -. (/) ~~ A ) )
4 1 3 syl
 |-  ( A e. V -> ( (/) ~< A <-> -. (/) ~~ A ) )
5 en0r
 |-  ( (/) ~~ A <-> A = (/) )
6 5 necon3bbii
 |-  ( -. (/) ~~ A <-> A =/= (/) )
7 4 6 bitrdi
 |-  ( A e. V -> ( (/) ~< A <-> A =/= (/) ) )