Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Schroeder-Bernstein Theorem
0sdomg
Metamath Proof Explorer
Description: A set strictly dominates the empty set iff it is not empty. (Contributed by NM , 23-Mar-2006) Avoid ax-pow , ax-un . (Revised by BTernaryTau , 29-Nov-2024)
Ref
Expression
Assertion
0sdomg
⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) )
Proof
Step
Hyp
Ref
Expression
1
0domg
⊢ ( 𝐴 ∈ 𝑉 → ∅ ≼ 𝐴 )
2
brsdom
⊢ ( ∅ ≺ 𝐴 ↔ ( ∅ ≼ 𝐴 ∧ ¬ ∅ ≈ 𝐴 ) )
3
2
baib
⊢ ( ∅ ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) )
4
1 3
syl
⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≺ 𝐴 ↔ ¬ ∅ ≈ 𝐴 ) )
5
en0r
⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 = ∅ )
6
5
necon3bbii
⊢ ( ¬ ∅ ≈ 𝐴 ↔ 𝐴 ≠ ∅ )
7
4 6
bitrdi
⊢ ( 𝐴 ∈ 𝑉 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) )