Step |
Hyp |
Ref |
Expression |
1 |
|
encv |
⊢ ( ∅ ≈ 𝐴 → ( ∅ ∈ V ∧ 𝐴 ∈ V ) ) |
2 |
|
breng |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( ∅ ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( ∅ ≈ 𝐴 → ( ∅ ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 ) ) |
4 |
3
|
ibi |
⊢ ( ∅ ≈ 𝐴 → ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 ) |
5 |
|
f1o00 |
⊢ ( 𝑓 : ∅ –1-1-onto→ 𝐴 ↔ ( 𝑓 = ∅ ∧ 𝐴 = ∅ ) ) |
6 |
5
|
simprbi |
⊢ ( 𝑓 : ∅ –1-1-onto→ 𝐴 → 𝐴 = ∅ ) |
7 |
6
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : ∅ –1-1-onto→ 𝐴 → 𝐴 = ∅ ) |
8 |
4 7
|
syl |
⊢ ( ∅ ≈ 𝐴 → 𝐴 = ∅ ) |
9 |
|
0ex |
⊢ ∅ ∈ V |
10 |
|
f1oeq1 |
⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1-onto→ ∅ ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) |
11 |
|
f1o0 |
⊢ ∅ : ∅ –1-1-onto→ ∅ |
12 |
9 10 11
|
ceqsexv2d |
⊢ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ |
13 |
|
breng |
⊢ ( ( ∅ ∈ V ∧ ∅ ∈ V ) → ( ∅ ≈ ∅ ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) ) |
14 |
9 9 13
|
mp2an |
⊢ ( ∅ ≈ ∅ ↔ ∃ 𝑓 𝑓 : ∅ –1-1-onto→ ∅ ) |
15 |
12 14
|
mpbir |
⊢ ∅ ≈ ∅ |
16 |
|
breq2 |
⊢ ( 𝐴 = ∅ → ( ∅ ≈ 𝐴 ↔ ∅ ≈ ∅ ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝐴 = ∅ → ∅ ≈ 𝐴 ) |
18 |
8 17
|
impbii |
⊢ ( ∅ ≈ 𝐴 ↔ 𝐴 = ∅ ) |