Metamath Proof Explorer


Theorem en0r

Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024)

Ref Expression
Assertion en0r AA=

Proof

Step Hyp Ref Expression
1 encv AVAV
2 breng VAVAff:1-1 ontoA
3 1 2 syl AAff:1-1 ontoA
4 3 ibi Aff:1-1 ontoA
5 f1o00 f:1-1 ontoAf=A=
6 5 simprbi f:1-1 ontoAA=
7 6 exlimiv ff:1-1 ontoAA=
8 4 7 syl AA=
9 0ex V
10 f1oeq1 f=f:1-1 onto:1-1 onto
11 f1o0 :1-1 onto
12 9 10 11 ceqsexv2d ff:1-1 onto
13 breng VVff:1-1 onto
14 9 9 13 mp2an ff:1-1 onto
15 12 14 mpbir
16 breq2 A=A
17 15 16 mpbiri A=A
18 8 17 impbii AA=