Metamath Proof Explorer


Theorem brsdom

Description: Strict dominance relation, meaning " B is strictly greater in size than A ". Definition of Mendelson p. 255. (Contributed by NM, 25-Jun-1998)

Ref Expression
Assertion brsdom ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 df-sdom ≺ = ( ≼ ∖ ≈ )
2 1 eleq2i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≼ ∖ ≈ ) )
3 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≺ )
4 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ )
5 df-br ( 𝐴𝐵 ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ )
6 5 notbii ( ¬ 𝐴𝐵 ↔ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ )
7 4 6 anbi12i ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ∧ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ ) )
8 eldif ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≼ ∖ ≈ ) ↔ ( ⟨ 𝐴 , 𝐵 ⟩ ∈ ≼ ∧ ¬ ⟨ 𝐴 , 𝐵 ⟩ ∈ ≈ ) )
9 7 8 bitr4i ( ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) ↔ ⟨ 𝐴 , 𝐵 ⟩ ∈ ( ≼ ∖ ≈ ) )
10 2 3 9 3bitr4i ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )