Metamath Proof Explorer


Theorem foima

Description: The image of the domain of an onto function. (Contributed by NM, 29-Nov-2002)

Ref Expression
Assertion foima F:AontoBFA=B

Proof

Step Hyp Ref Expression
1 imadmrn FdomF=ranF
2 fof F:AontoBF:AB
3 2 fdmd F:AontoBdomF=A
4 3 imaeq2d F:AontoBFdomF=FA
5 forn F:AontoBranF=B
6 1 4 5 3eqtr3a F:AontoBFA=B