Metamath Proof Explorer


Theorem eqtr2id

Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998)

Ref Expression
Hypotheses eqtr2id.1 A = B
eqtr2id.2 φ B = C
Assertion eqtr2id φ C = A

Proof

Step Hyp Ref Expression
1 eqtr2id.1 A = B
2 eqtr2id.2 φ B = C
3 1 2 eqtrid φ A = C
4 3 eqcomd φ C = A