Metamath Proof Explorer


Theorem eqtr2id

Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998)

Ref Expression
Hypotheses eqtr2id.1 𝐴 = 𝐵
eqtr2id.2 ( 𝜑𝐵 = 𝐶 )
Assertion eqtr2id ( 𝜑𝐶 = 𝐴 )

Proof

Step Hyp Ref Expression
1 eqtr2id.1 𝐴 = 𝐵
2 eqtr2id.2 ( 𝜑𝐵 = 𝐶 )
3 1 2 eqtrid ( 𝜑𝐴 = 𝐶 )
4 3 eqcomd ( 𝜑𝐶 = 𝐴 )