Description: Shorter proof of ssfi using ax-pow . (Contributed by NM, 24-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ssfiALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfi | |
|
2 | bren | |
|
3 | f1ofo | |
|
4 | imassrn | |
|
5 | forn | |
|
6 | 4 5 | sseqtrid | |
7 | 3 6 | syl | |
8 | ssnnfi | |
|
9 | isfi | |
|
10 | 8 9 | sylib | |
11 | 7 10 | sylan2 | |
12 | 11 | adantrr | |
13 | f1of1 | |
|
14 | f1ores | |
|
15 | 13 14 | sylan | |
16 | vex | |
|
17 | 16 | resex | |
18 | f1oeq1 | |
|
19 | 17 18 | spcev | |
20 | bren | |
|
21 | 19 20 | sylibr | |
22 | entr | |
|
23 | 21 22 | sylan | |
24 | 15 23 | sylan | |
25 | 24 | ex | |
26 | 25 | reximdv | |
27 | isfi | |
|
28 | 26 27 | imbitrrdi | |
29 | 28 | adantl | |
30 | 12 29 | mpd | |
31 | 30 | exp32 | |
32 | 31 | exlimdv | |
33 | 2 32 | biimtrid | |
34 | 33 | rexlimiv | |
35 | 1 34 | sylbi | |
36 | 35 | imp | |