Metamath Proof Explorer


Theorem ssfiALT

Description: Shorter proof of ssfi using ax-pow . (Contributed by NM, 24-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ssfiALT AFinBABFin

Proof

Step Hyp Ref Expression
1 isfi AFinxωAx
2 bren Axzz:A1-1 ontox
3 f1ofo z:A1-1 ontoxz:Aontox
4 imassrn zBranz
5 forn z:Aontoxranz=x
6 4 5 sseqtrid z:AontoxzBx
7 3 6 syl z:A1-1 ontoxzBx
8 ssnnfi xωzBxzBFin
9 isfi zBFinyωzBy
10 8 9 sylib xωzBxyωzBy
11 7 10 sylan2 xωz:A1-1 ontoxyωzBy
12 11 adantrr xωz:A1-1 ontoxBAyωzBy
13 f1of1 z:A1-1 ontoxz:A1-1x
14 f1ores z:A1-1xBAzB:B1-1 ontozB
15 13 14 sylan z:A1-1 ontoxBAzB:B1-1 ontozB
16 vex zV
17 16 resex zBV
18 f1oeq1 x=zBx:B1-1 ontozBzB:B1-1 ontozB
19 17 18 spcev zB:B1-1 ontozBxx:B1-1 ontozB
20 bren BzBxx:B1-1 ontozB
21 19 20 sylibr zB:B1-1 ontozBBzB
22 entr BzBzByBy
23 21 22 sylan zB:B1-1 ontozBzByBy
24 15 23 sylan z:A1-1 ontoxBAzByBy
25 24 ex z:A1-1 ontoxBAzByBy
26 25 reximdv z:A1-1 ontoxBAyωzByyωBy
27 isfi BFinyωBy
28 26 27 imbitrrdi z:A1-1 ontoxBAyωzByBFin
29 28 adantl xωz:A1-1 ontoxBAyωzByBFin
30 12 29 mpd xωz:A1-1 ontoxBABFin
31 30 exp32 xωz:A1-1 ontoxBABFin
32 31 exlimdv xωzz:A1-1 ontoxBABFin
33 2 32 biimtrid xωAxBABFin
34 33 rexlimiv xωAxBABFin
35 1 34 sylbi AFinBABFin
36 35 imp AFinBABFin