Metamath Proof Explorer


Theorem sseqtrid

Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses sseqtrid.1 BA
sseqtrid.2 φA=C
Assertion sseqtrid φBC

Proof

Step Hyp Ref Expression
1 sseqtrid.1 BA
2 sseqtrid.2 φA=C
3 1 a1i φBA
4 3 2 sseqtrd φBC