Metamath Proof Explorer


Theorem sseqtrrid

Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses sseqtrrid.1 B A
sseqtrrid.2 φ C = A
Assertion sseqtrrid φ B C

Proof

Step Hyp Ref Expression
1 sseqtrrid.1 B A
2 sseqtrrid.2 φ C = A
3 1 a1i φ B A
4 3 2 sseqtrrd φ B C