Metamath Proof Explorer


Theorem sseqtrrid

Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses sseqtrrid.1 𝐵𝐴
sseqtrrid.2 ( 𝜑𝐶 = 𝐴 )
Assertion sseqtrrid ( 𝜑𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 sseqtrrid.1 𝐵𝐴
2 sseqtrrid.2 ( 𝜑𝐶 = 𝐴 )
3 1 a1i ( 𝜑𝐵𝐴 )
4 3 2 sseqtrrd ( 𝜑𝐵𝐶 )