Metamath Proof Explorer


Theorem sseqtrrid

Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses sseqtrrid.1
|- B C_ A
sseqtrrid.2
|- ( ph -> C = A )
Assertion sseqtrrid
|- ( ph -> B C_ C )

Proof

Step Hyp Ref Expression
1 sseqtrrid.1
 |-  B C_ A
2 sseqtrrid.2
 |-  ( ph -> C = A )
3 1 a1i
 |-  ( ph -> B C_ A )
4 3 2 sseqtrrd
 |-  ( ph -> B C_ C )