Metamath Proof Explorer
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
sseqtrid.1 |
⊢ 𝐵 ⊆ 𝐴 |
|
|
sseqtrid.2 |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
|
Assertion |
sseqtrid |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sseqtrid.1 |
⊢ 𝐵 ⊆ 𝐴 |
2 |
|
sseqtrid.2 |
⊢ ( 𝜑 → 𝐴 = 𝐶 ) |
3 |
|
sseq2 |
⊢ ( 𝐴 = 𝐶 → ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ 𝐶 ) ) |
4 |
3
|
biimpa |
⊢ ( ( 𝐴 = 𝐶 ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ⊆ 𝐶 ) |
5 |
2 1 4
|
sylancl |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐶 ) |