Metamath Proof Explorer


Theorem f1domfi2

Description: If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g ). (Contributed by BTernaryTau, 24-Nov-2024)

Ref Expression
Assertion f1domfi2 A Fin B V F : A 1-1 B A B

Proof

Step Hyp Ref Expression
1 f1fn F : A 1-1 B F Fn A
2 fnfi F Fn A A Fin F Fin
3 1 2 sylan F : A 1-1 B A Fin F Fin
4 3 ancoms A Fin F : A 1-1 B F Fin
5 4 3adant2 A Fin B V F : A 1-1 B F Fin
6 f1dom3g F Fin B V F : A 1-1 B A B
7 5 6 syld3an1 A Fin B V F : A 1-1 B A B